Функции гормонов в клетке

Щитовидная железа

Тироксин и трийодтиронин поступают в кровь и транспортируются тироксинсвязывающими белками (альбуминами и преальбуминами). Свободного гормона не более 0,3%. Разрушаются гормоны в печени в результате образования конъюгатов с глюкуроновой и серной кислотами, при этом высвобождается йод. Эффекты реализуются по мембранно-внутриклеточному и цитозольному типам. Калоригенный эффект проявляется повышением потребления кислорода и повышенным образованием тепла (это обусловлено разобщением клеточного дыхания и окислительного фосфорилирования) кроме того активируется АТФ — зависимое выкачивание натрия из клеток, на которое тратится 25-40% всей энергии АТФ. Еще один важный эффект этих гормонов — стимуляции отдельных этапов синтеза белка.

Паратгормон — одиночная полипептидная цепь. Скорость секреции его зависит от концентрации ионов кальция в сыворотке крови: повышение концентрации снижает секрецию. Действует по мембранно-внутриклеточному механизму.

Кальцитонин — одоцепочечный полипептид (32 АК). Повышение концентраци ионов кальция активирует секркцию гормона.. Действует изменяя активность кальциевого насоса (через калцийзависимую АТФ-азу). Действие этих двух гормонов тесно связано с витамином Д.

В мозговом слое продуцируются два катехоламина — адреналин и норадреналин. Их образование включает следующие этапы: тирозин (АК) — диоксифенилаланин (ДОФА) — диоксифенилэтиламин (дофамин) — норадреналин — адреналин . Эффекты реализуются по мембранно-внутриклеточному типу. В печени и мышцах активируют гликогенолиз (распад гликогена) это приводит к увеличению концентрации глюкозы и накоплению лактата. Стимулируют липолиз, в следствии чего в кровоток высвобождаются жирные кислоты.

Корковый слой продуцирует около 30 стероидных гормонов, содержащих 19 или 21 атом углерода. Различают три группы стероидов: глюкокортикоиды — преимущественно влияют на углеводный обмен, минералокортикоиды — на минерально-водный и половые гормоны (андрогены и эстрогены). Кортикостероиды синтезируются на основе холестерола . Важный этап этого процесса — гидроксилирование — катализирует цх Р-450 , а кофермент — НАДФН . Транспортируются гормоны специфическим a -глобулином (транспортином). Эффект реализуется по цитозольному типу, через изменение скорости продукции специфических белков в клетках-мишенях. В результате в печени увеличивается гликогенез (синтез гликогена) и глюконеогенез (образование глюкозы) из АК в связи с повышением активности аминотрансфераз, пируваткарбоксилазы, гликогенсинтетазы и глюкозо-6-фосфотазы.

Интенсивный синтез белков в печени сопровождается торможением синтеза белков в мышцах, активацией расщепления белков в лимфоидной ткани. В них снижается уровень свободных АК и теряется белковый азот, увеличивается синтез мочевины и развивается отрицательный азотистый баланс. При длительных воздействиях кортикостероидов развивается атрофия мышц. Подавляя белковый синтез в лимфоидной ткани, кортекостероиды препятствуют образованию антител (которые являются белками), участвующих в формировании аллергической ответной реакции организма. Т.е. Кортикостероиды таким путем снижают интенсивность аллергических реакций. Кроме того эти гормоны активируют синтез липидов.

Альдостерон — минералокортикоид. Это липофильное соединение, которое проникает в цитоплазму клеток (цитозотльный тип) и активирует транскирипцию генов, содержащих информацию о структуре натрий-транспортных белков эпителия канальцев почек. Синтез в клетках таких белков приводит к усиленному переносу ионов натрия из первичной мочи обратно в кровь.

Инсулин — глобулярный белок, синтезируется в виде предшественника, затем активируется. Мишенями инсулина (т.е. где есть рецепторы) являются мышечная, соединительная и жировая ткани. Мало рецепторов содержат гепатоциты и совсем нет у нервных клеток. Эффект реализуется по мембранному типу. Кроме того существует еще и мембранно-внутриклеточные эффекты при участии цГМФ и цАМФ. В совокупности инсулин активирует: транспорт в клетку глюкозы, АК, ионов калия и кальция, превращение глюкозы по основному пути, синтез гликогена и триацилглицеридов. Инсулин тормозит: расщепление гликогена (гликогенолиз) и образование глюкозы (глюконеогенез), расщепление жиров, образование кетоновых тел и синтез холестерола, протеолиз, обмен АК и образование мочевины.

Глюкагон — образуется в виде предшественника. Действует по мембранно-внутриклеточному типу. Мишень — гепатоциты, миоциты и жировая ткань. Гормон повышает концентрацию глюкозы в крови за счет расщепления гликогена, угнетения синтеза белка, активации распада белка и липидов. Т.е. глюкагон — антагонист инсулина.

Гормоны половых желез

Эстрогены — женские половые гормоны, продуцируются яичниками и в ограниченном количестве надпочечниками. Стероидной природы, эффекты реализуются по цитозольному механизму.

Гестогены — гормоны желтого тела. Важнейший — прогестерон , который синтезируется также плацентой и надпочечниками. Механизм действия — цитозольный, мишени: эндометрий, плацента, молочные железы.

Релаксин — гормон желтого тела полипептидной природы, состоит из двух цепей, связанных полипептидным мостиком.

Андрогены — мужские половые гормоны. Тестостерон и дигидротестостерон. Ткани-мишени — простата, мышцы. Эффект реализуется по цитозольному типу. Выраженно активируют синтез белка в миоцитах. На основе этих веществ синтезированы анаболические стероиды. Отношение анаболической активности к андрогенной у лучших из этих соединений выше чем у тестостерона в 5-12 раз.

Эсторгены и андрогены являются по отношению к рецепторам друг друга антигормонами (т.е. по аналогии с ферментами — конкурентными ингибироами). Поэтому в онкологической практике применяют для лечения опухолей половой сферы у самок — тестостерон, у самцов — эстрадиол.

Витамины

К этой группе веществ относятся низкомолекулярные органические соединения, которые не выполняют пластической функции и не синтезируются в организме вообще или синтезируются в ограниченном количестве микрофлорой кишечника. Эти вещества проявляют активность в малых количествах, но с ними связаны многие метаболические процессы, которые протекают при участии ферментов. Существуют также витаминоподобные вещества, которые не отвечают всем вышеперечисленным признакам.

Номенклатура основана на использовании заглавных букв латинского алфавита и по систематике ИЮПАК используют названия, отражающие химическую природу и функцию витаминов. Классифицировать витамины по химической природе невозможно, т. к. большинство из них относится к разным классам химических соединений. Но по отношению к растворителям их разделяют на водо- и жирорастворимые. По физиологическому действию на организм различают:

1. повышающие общую сопротивляемость организма (А, С, В1, В2, РР)

2. антигеморрагические (С, Р, К)

3. антианемические (С, В12, фолиевая кислота)

4. антиинфекционные (А, С)

5. регуляторы зрения (А, В2, С)

Обеспеченность организма витаминами выражается в трех формах:

1. Авитаминоз — полный дефицит какого-либо витамина. Основная причина — нарушение всасывания его в кишечнике, воспаления и дистрофические изменения печени, дисбактериозы,

2. Гиповитаминоз — частичный дефицит витамина, полигиповитаминоз — нескольких витаминов,

3. Гипервитаминоз — избыток витамина (чаще А, Д, С).

Основная биохимическая роль некоторых витаминов

Витамин В1, тиамин . В организме превращается в кофермент ТДФ. Коферментные функции: в составе дегидрогеназ обеспечивает окислительное декарбоксилирование пировиноградной кислоты и альфа-кетоглутаровой кислоты.

Витамин В2, рибофлавин . Коферментная форма: ФМН и ФАД . Участвует в транспорте протонов и электронов водорода от НАД-зависимых дегидрогеназ (где кофермент НАД) на кофермент Q , участвует в дегидрировании аминокислот, кето- и оксикислот.

Витамин В3 , пантотеновая кислота . Коферментная форма — КоА . Участвует в дегидрировании и дегидратации ацильных остатков в составе ацил-КоА (при b -окислении ЖК).

Витамин В5 ( PP ), никотиновая кислота . Коферментная форма: НАД и НАДФ . Функционирует в составе дегидрогеназ в процессе транспорта водорода от окисляемых субстратов на второе звено дыхательной цепи, на флавопротеид. В отличие от многих витаминов синтезируется в организме из АК триптофана.

Витамин В6, пиридоксаль . Поступает в организм в виде пиридоксина , который фосфорилируется в печени, а затем окисляется до пиридоксальфосфата . Это коферментная форма, которая участвует в реакциях переаминирования и декрбоксилирования аминокислот, обезвреживании биогенных аминов, биосинтезе сфинголипидов и гликогенолизе.

Витамин Н, биотин . Синтезируется микрофлорой кишечника. Биотин является коферментом карбоксилаз.

Витамин Вс , фолиевая кислота . Участвует в синтезе пуринов, пиримидинов, глицина, метионина.

Витамин В12 , цианкобаламин. Участвует в реакциях синтеза метионина, в превращении метилмалонил-КоА (продукт окисления ЖК с нечетным числом углеродных атомов) в сукцинил КоА , который поступает в ЦТК, в образовании коферментных форм фолацина и опосредовано в синтезе ДНК.

Витамин С , аскорбиновая кислота. Основная функция — донор водорода в окислительно-восстановительных реакциях (при этом превращается в дигидроаскорбиновую кислоту). Участвует в превращениях ароматических аминокислот:

— гидроксилировании триптофана в положении 5 (синтез серотонина)

— гидроксилировании ДОФА (образование норадреналина)

Читайте также:  ФГБУ «Национальный медицинский исследовательский центр кардиологии» Экспериментальное производство м

— гидроксилировании стероидов (синтез кортекостероидов)

— гидроксилировании остатков пролина и лизина в проколлагене (образование коллагена).

Кроме того, в кишечнике обеспечивает восстановление трехвалентного железа в двухвалентное для того, чтобы оно могло всосаться.

Витамин А , ретинол. Две формы: ретинол — спирт, ретинал — альдегид. В тканях витамин А превращается в сложные эфиры: ретинил-пальминат, ретинилацетат, ретинилфосфат. Предшественник — каротин известен в альфа, бета и гамма формах. Наиболее активен бета-каротин, при расщеплении одной его молекулы образуется две молекулы ретиналя. Компонентом светочувствительных пигментов сетчатки глаза является 11-цис-ретиналь. В палочках содержится зрительный пигмент родопсин, в колбочках — йодопсин. Оба белки с 11-цис-ретиналем в качестве простетической группы. Кванты света вызывают изомеризацию 11-цис-ретиналя в трансретиналь, после чего происходит распад пигмента на свободную белковую часть — опсин и трансретиналь. Родопсин и йодопсин встроены в мембрану светочувствительных клеток сетчатки, поэтому фотоизомеризация ретиналя приводит к местной деполяризации мембраны. В результате возникает электрический импульс, который распространяется по нервному волокну. Восстановление родопсина и йодопсина происходит при участии ретиналь-изомеразы.

Витамин Д , кальциферол. Поступает в организм в виде предшественников, основной из которых — 7-дегидрохолестерол, который после воздействия УФ-лучей в коже превращяется в холекальциферол (Д3), предшественник — эргостерин по такому же механизму превращается в эргокальциферол (Д2), а Д1 — это их смесь. В результате ряда химических модификаций витамин Д превращается в 1,25 дигидрооксихолекальциферол. Это вещество в клетках слизистой оболочки кишечника участвует в превращении кальцийсвязывающего белка из предшественника в активную форму. Он ускоряет всасывание ионов кальция из просвета кишечника.

Витамин Е , токоферол . Существует альфа, бета, гамма, дельта формы. Основная функция — регуляция интенсивности свободнорадикального окисления. Это проявляется ограничением скорости процессов перекисного окисления ненасыщенных жирных кислот в составе липидов клеточных мембран. Является синергистом селена (взаимно улучшают действие). Селен — кофактор фермента глутатионпероксидазы, которая инактивирует гидроперекиси липидов мембран, а токоферол тормозит образование таких гидроперекисей.

К ним относятся соединения, которые не являются обязательными компонентами пищи (т.н. нутриенты) и их дефицит не сопровождается характерными, четко выраженными симптомами.

Холин . Всасываясь в стенки кишечника там фосфорилируется, образуя фофсохолин. Принимает участие в синтезе фосфатидов и ацелилхолина, а также он является донором метильной группы в реакциях переметилирования (трансферазы).

Липоевая кислота . Выполняет роль кофермента окислительного декарбоксилирования пировиноградной и альфа-кетоглутаровой кислот. Является сильным восстановителем предотвращает быстрое окисление витамин Е и С, т.е. поддерживает и их высокий уровень.

Оротовая кислота . Исходный продукт для синтеза УТФ (компонента молекулы нуклеиновой кислоты). В виде оротата калия применяется при нарушениях белкового обмена.

Пангамовая кислота . Участвует в процессах переаминирования как донор метильной группы, активирует окислительно-восстановительные процессы, способствует накоплению макроэргических соединений, обезвреживанию токсинов.

Убихинон , коэнзим Q . Функция — транспорт водорода через липидный слой мембран.

ЛИТЕРАТУРА К ГЛАВЕ IV .5.

1. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

2. Пустовалова Л.М. Практикум по биохимии // Ростов-на Дону: Феникс, 1999, 540 с.

© И н с т и т у т Ф и з и к и
им. Л.В.Киренского 1998-2007

[an error occurred while processing this directive]

bffwd

bffwd

Гормоны сигнальные химические вещества, выделяемые эндокринными железами непосредственно в кровь и оказывающие сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в определённых органах и системах.

Существуют и другие определения, согласно которым трактовка понятия гормон более широка: «сигнальные химические вещества, вырабатываемые клетками тела и влияющие на клетки других частей тела». Это определение представляется предпочтительным, так как охватывает многие традиционно причисляемые к гормонам вещества: гормоны животных, которые лишены кровеносной системы (например, экдизоны круглых червей и др.), гормоны позвоночных, которые вырабатываются не в эндокринных железах (простагландины, эритропоэтин и др.), а также гормоны растений.

Открыты в 1902 году Старлингом и Бейлиссом.

Назначение гормонов, значения гормонов

Рецепторы

Все гормоны реализуют своё воздействие на организм или на отдельные органы и системы при помощи специальных рецепторов к этим гормонам. Рецепторы к гормонам делятся на 3 основных класса:

— рецепторы, связанные с ионными каналами в клетке (ионотропные рецепторы)

-рецепторы, являющиеся ферментами или связанные с белками-передатчиками сигнала с ферментативной функцией (метаботропные рецепторы, например, GPCR)

-рецепторы ретиноевой кислоты, стероидных и тиреоидных гормонов, которые связываются с ДНК и регулируют работу генов.

Для всех рецепторов характерен феномен саморегуляции чувствительности посредством механизма обратной связи — при низком уровне определённого гормона автоматически компенсаторно возрастает количество рецепторов в тканях и их чувствительность к этому гормону — процесс, называемый сенсибилизацией (а также ап-регуляцией (up-regulation), или сенситизацией (sensitization)) рецепторов. И наоборот, при высоком уровне определённого гормона происходит автоматическое компенсаторное понижение количества рецепторов в тканях и их чувствительности к этому гормону — процесс, называемый десенсибилизацией (а также даун-регуляцией (down-regulation), или десенситизацией (desensitization)) рецепторов.

Увеличение или уменьшение выработки гормонов, а также снижение или увеличение чувствительности гормональных рецепторов и нарушение гормонального транспорта приводит к эндокринным заболеваниям.

Механизмы действия гормонов

Когда гормон, находящийся в крови, достигает клетки-мишени, он вступает во взаимодействие со специфическими рецепторами; рецепторы «считывают послание» организма, и в клетке начинают происходить определенные перемены. Каждому конкретному гормону соответствуют исключительно «свои» рецепторы, находящиеся в конкретных органах и тканях — только при взаимодействии гормона с ними образуется гормон-рецепторный комплекс.

Механизмы действия гормонов могут быть разными. Одну из групп составляют гормоны, которые соединяются с рецепторами, находящимися внутри клеток — как правило, в цитоплазме. К ним относятся гормоны с липофильными свойствами — например, стероидные гормоны (половые, глюко- и минералокортикоиды), а также гормоны щитовидной железы. Будучи жирорастворимыми, эти гормоны легко проникают через клеточную мембрану и начинают взаимодействовать с рецепторами в цитоплазме или ядре. Они слабо растворимы в воде, при транспорте по крови связываются с белками-носителями.

Считается, что в этой группе гормонов гормон-рецепторный комплекс выполняет роль своеобразного внутриклеточного реле — образовавшись в клетке, он начинает взаимодействовать с хроматином, который находится в клеточных ядрах и состоит из ДНК и белка, и тем самым ускоряет или замедляет работу тех или иных генов. Избирательно влияя на конкретный ген, гормон изменяет концентрацию соответствующей РНК и белка, и вместе с тем корректирует процессы метаболизма.

Биологический результат действия каждого гормона весьма специфичен. Хотя в клетке-мишени гормоны изменяют обычно менее 1% белков и РНК, этого оказывается вполне достаточно для получения соответствующего физиологического эффекта.

Другие гормоны характеризуются тремя особенностями:

— они растворяются в воде;
— не связываются с белками носителей;
— начинают гормональный процесс, как только соединяются с рецептором, который может находиться в ядре клетки, ее цитоплазме или располагаться на поверхности плазматической мембраны.

В механизме действия гормон-рецепторного комплекса таких гормонов обязательно участвуют посредники, которые индуцируют ответ клетки. Наиболее важные из таких посредников — цАМФ (циклический аденозинмонофосфат), инозитолтрифосфат, ионы кальция.

Ионы кальция в клетках

В среде, лишенной ионов кальция, или в клетках с недостаточным их количеством, действие многих гормонов ослабляется; при применении веществ, увеличивающих внутриклеточную концентрацию кальция, возникают эффекты, идентичные воздействию некоторых гормонов.

Участие ионов кальция как посредника обеспечивает воздействие на клетки таких гормонов, как вазопрессин и катехоламины.

Однако есть гормоны, у которых внутриклеточный посредник до сих пор не обнаружен. Из наиболее известных таких гормонов можно назвать инсулин, у которого на роль посредника предлагали цАМФ и цГМФ, а также ионы кальция и даже перекись водорода, но убедительных доказательств в пользу какого-нибудь одного вещества до сих пор нет. Многие исследователи считают, что в таком случае посредниками могут выступать химические соединения, структура которых полностью отличается от структуры уже известных науке посредников.

Выполнив свою задачу, гормоны либо расщепляются в клетках-мишенях или в крови, либо транспортируются в печень, где расщепляются, либо, наконец, удаляются из организма в основном с мочой (например, адреналин).

ГОРМОНЫ И ИХ ФУНКЦИИ.

Читайте также:  Как убрать флюс на щеке быстро в домашних условиях

Гормоны гипофиза

Тиреоидные и паратиреоидные гормоны

тироксин

Эти гормоны влияют также на метаболизм углеводов и, наряду с другими гормонами, регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Короче говоря, тиреоидные гормоны оказывают стимулирующее действие на обменные процессы. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а при их недостаточности возникает гипотиреоз, или микседема.
Другим соединением, найденным в щитовидной железе, является длительно действующий тиреоидный стимулятор. Он представляет собой гамма-глобулин и, вероятно, вызывает гипертиреоидное состояние.Гормон паращитовидных желез называют паратиреоидным, или паратгормоном; он поддерживает постоянство уровня кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция в крови не вернется к норме. Другой гормон – кальцитонин – оказывает противоположное действие и выделяется при повышенном уровне кальция в крови.Раньше полагали, что кальцитонин секретируется паращитовидными железами, теперь же показано, что он вырабатывается в щитовидной железе. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев, причем возможно сочетание этих нарушений. Недостаточность паратгормона сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.
Гормоны надпочечников.

Надпочечники – небольшие образования, расположенные над каждой почкой. Они состоят из внешнего слоя, называемого корой, и внутренней части – мозгового слоя. Обе части имеют свои собственные функции, а у некоторых низших животных это совершенно раздельные структуры. Каждая из двух частей надпочечников играет важную роль как в нормальном состоянии, так и при заболеваниях. Например, один из гормонов мозгового слоя – адреналин – необходим для выживания, так как обеспечивает реакцию на внезапную опасность.

Гормоны

Время чтения: мин.

В современном мире только ленивый не сталкивался хотя бы раз в жизни с понятием «гормоны». Несмотря на широкую популяризацию этого понятия, многие не понимают полного смысла этого слова и важность гормонов в жизни каждого человека. Что же такое гормоны? Если говорить об официальной трактовке этого понятия, то это особые вещества различной природы, вырабатываемые клетками эндокринных желез или синтетические формы, поступающие извне, которые способны взаимодействовать с рецепторами клеток органов и тканей и оказывать свое влияние на их функционирование. Таким образом, гормоны можно назвать регуляторами многих процессов в организме.

Помимо гормонов, существуют также различные гормонально-активные вещества, гормоноподобные субстанции, которые способны оказывать сходное действие, не являясь гормонами в истинном значении этого слова. Они вырабатываются не эндокринными клетками, могут взаимодействовать вне кровеносного русла.

Гормоны влияют практически на все обменные процессы организме, важны для поддержания гомеостаза. Их роль в организме нельзя переоценить, ведь нарушения гормональной сферы – одни из самых коварных заболеваний. Гормоны вырабатываются в течение всей жизни человека, их количество может колебаться в зависимости от возраста и пола человека, его физиологического состояния.

Классификация гормонов достаточно сложная, поскольку их можно разделить на группы по многим отдельным признакам: в зависимости от органа, их вырабатывающего; по химическому строению; по механизму воздействия; по половому признаку – мужские и женские; по виду воздействия на клетки-мишени и другие. Кроме того, что гормоны влияют на клетки-мишени, они взаимодействуют и между собой, оказывая те или иные дополнительные эффекты. Например, некоторые гормоны, не связанные с репродуктивной сферой, а оказывающие высокоспецифическое воздействие, тиреоидные, например, за счет побочных эффектов влияют и на работу репродуктивной сферы, вызывая разнообразные нарушения функции половых органов и бесплодие.

Если говорить о классификации гормонов по анатомическому признаку (то есть в зависимости от места выработки), то они бывают: гипоталамические, гипофизарные (в отдельности адено- и нейрогипофиза), надпочечниковые, тиреоидные, половые, плацентарные и т.д. наибольшую долю гормонов вырабатывают эндокринные железы, однако определенный пул приходится на долю так называемой APUD системы. Она представляет собой пул клеток, рассредоточенных практически по всему организму.

Классификации по химическому происхождению и механизму воздействия иногда объединяются, поскольку существует непосредственная взаимосвязь между структурой вещества и способом его влияния на орган-мишень. Так, различают гормоны стероидной структуры, белковые (или пептидные), производные аминокислот и производные жирных кислот.

Каждый класс биологически активных веществ выполняет свои, особые функции. Пептидные гормоны, к примеру, преимущественно влияют на разнообразные метаболические процессы. В эту категорию входят панкреатические гормоны– инсулин и глюкагон, гипофизарные и гипоталамические гормоны и некоторые другие. Эта группа биологически активных веществ оказывает непосредственное влияние на работу репродуктивной системы человека, в особенности, это касается женщин. Чаще всего такие гормоны вырабатываются в виде предшественников и уже потом метаболизируются в активные формы. Белковые гормоны способен вырабатывать гипофиз (пролактин, тропные гормоны – соматотропный, тиреотропный, гонадотропный), гипоталамус (окситоцин и вазопрессин, которые транспортируются по особым путям в заднюю долю гипофиза и выделяются уже оттуда в кровоток), поджелудочная железа (инсулин и глюкагон), почки (эритропоэтин), паращитовидные железы (паратгормон).

Что касается гормонов-производных аминокислот, то речь идет о трех основных видах гормонов – гормоны щитовидной железы, катехоламины и мелатонин. Все они представляют собой производные тирозина или триптофана. Щитовидная железа выделяет так называемые тиреоидные гормоны, которые являются производными тирозина и необходимы для роста и развития организма, нормальной работы обменных механизмов, а также для осуществления стресс-реакций. При нарушении функции щитовидной железы, как в сторону повышенной секреции гормонов, так и пониженной, наступают достаточно серьезные проблемы с работой и половой системы, особенно этому подвержены женщины. Начинаться изменения могут с нарушений цикла, гормональных сбоев и доходить вплоть до бесплодия. Надпочечники вырабатывают адреналин и норадреналин – основные катехоламины, а гипоталамус – дофамин.

Спектр эффектов у этих веществ чрезвычайно широкий и варьируется от медленных до быстрых эффектов. Мелатонин важен для пигментного обмена, к тому же, среди дополнительных эффектов — антигонадотропное действие и седация.

Стероидные гормоны также незаменимы для поддержания всех функций организма, поскольку к этому виду гормонов относятся половые стероиды и кортикостероидные гормоны. Стероидные гормоны вырабатываются надпочечниками (корковым слоем) – глюкокортикостероиды, и клетками преимущественно половых желез – андрогены и эстрогены, прогестерон. Такие гормоны обладают свойством высокой липофильности, поэтому достаточно просто проникают через мембраны клеток и воздействуют внутриклеточно. Как и практически все биологически активные вещества, стероиды переносятся с помощью специальных транспортных белков.

К гормонам-производным жирных кислот (полиненасыщенных) относят две большие группы биологически активных веществ – ретиноиды, а точнее ретиноевая кислота, и эйкозаноиды. Ретиноевая кислота важна в развитии соединительной ткани, в частности, костей, мягких тканей, сетчатки глаза. Учитывая, что для достаточного ее количества необходимо некоторое поступление витамина А с пищей, иногда возникает ее избыток, что является опасным состоянием, особенно для лиц, планирующих беременность и беременных, так как может оказывать тератогенный эффект – вызывать пороки развития плода. Эйкозаноиды – это тканевые гормоны, которые образуются повсеместно в организме человека и воздействуют там, где образовались. Несмотря на то, что из-за этого их концентрация невелика в сыворотке крови, это не уменьшает их важности для нормального функционирования всех органов и систем благодаря местному воздействию.

Гормоны начинают работать в организме еще с начала внутриутробной жизни. Вначале это происходит в виде влияния материнских гормонов, а затем и клетки плода начинают их синтезировать.

Регуляция синтеза гормонов в организме происходит преимущественно благодаря механизму обратной связи. Существует своя иерархия всех гормонов, учитывая их влияние друг на друга и на клетки-мишени. Так, на первом месте этой пирамиды находятся гипоталамические гормоны, которые еще называют рилизинг-факторы. Они имеют пептидную структуру и регулируют работу гипофиза, оказывая тормозное или стимулирующее влияние на выработку им своих гормонов. Часть гипоталамических гормонов связана с функцией аденогипофиза – это либерины (оказывают стимулирующее действие) и статины (оказывают тормозное действие), другая часть поступает в заднюю долю гипофиза – окситоцин и вазопрессин, которые некоторые ошибочно принимают за гипофизарные гормоны, хотя они лишь депонируются в гипофизе и выделяются оттуда по необходимости в кровоток, однако их синтез происходит именно в гипоталамусе.

Под воздействием гипоталамических гормонов, гипофиз выделяет так называемые тропные гормоны, то есть имеющие узконаправленное действие на определенный орган или ткань. Так, гонадотропин действует на половые железы, регулируя секрецию ими стероидных гормонов, тиреотропин – на ткань щитовидной железы. Фоллитропин и лютропин – особо важны для женского здоровья, поскольку они обусловливают вместе с гонадотропином нормальное половой системы и ее функционирование. Сбои в работе этих гормонов приводят к весьма плачевным последствиям для репродуктивной функции, вплоть до бесплодия. Нарушение синтеза тиреотропного гормона также может быть причиной эндокринного фактора проблем с зачатием и вынашиванием малыша.

Читайте также:  Почему возникают нарушения мочеиспускания MinuDoc

Как осуществляется механизм обратной связи? Влияние гормонов на синтез друг друга выглядит следующим образом. Рилизинг-гормоны гипоталамуса оказывают влияние на синтез гормонов гипофиза, стимулируя или вызывая торможение их синтеза. Гипофизарные гормоны влияют на органы-мишени, которыми являются железы внутренней секреции. Эти эндокринные железы в ответ на это выделяют то или иное количество специфических гормонов, которые воздействуют уже непосредственно на свои клетки-мишени в организме. Сигнал о концентрации этих веществ в крови поступает в гипоталамус и в зависимости от их уровня в крови гипоталамус выделяет то или иное количество рилизинг-гормонов.

Как же гормоны влияют непосредственно на самочувствие и состояние здоровья человека? Получить информацию об этом можно, обратившись за консультацией на сайте, которая проводится бесплатно опытными специалистами, владеющими знаниями в этой области. Помимо влияния на синтез других гормонов, они обладают крайне широкими функциями:

  • Влияют на психическую и эмоциональную сферу, настроение, умственные способности;
  • Влияют на активность иммунной системы;
  • Влияют на процессы обмена, метаболизм в клетках и тканях, обмен веществ;
  • Участвуют в формирование стресс-реакций, помогая организму обороняться, защищаться, спасаться, реализуя инстинкты самосохранения;
  • Обеспечивают процессы адаптации организма к условиях окружающей среды;
  • Формируют течение различных жизненных циклов в организме: максимальные рост и развитие в детском возрасте, половое развитие в пубертатный период,
  • реализацию детородной функции в репродуктивном возрасте, процессы угасания активности всех систем в зрелом и пожилом периоде жизни;
  • Регулируют жизненно-важные функции;

Итак, какие гормоны влияют на те или иные функции? На развитие организма в умственном и физическом плане больше всего влияют соматотропин, тиреоидные и половые гормоны. Помогать организму адаптироваться к меняющимся условиям окружающей среды призваны, преимущественно, гормоны коры и мозгового вещества надпочечников. Обеспечивают реализацию детородной функции больше всего гормоны гипоталамо-гипофизарно-яичниковой системы. Так, все гормоны можно разделить по действию на ростовые и регуляторные (основной орган, их вырабатывающий – гипофиз), половые ( вырабатываются преимущественно половыми железами), стрессовые (особенно мозговое вещество надпочечников – катехоламины), кортикостероидные (образуются в коре надпочечников) и обменные (панкреатические, тиреоидные и другие).

Таким образом, только при нормальном функционировании эндокринной системы и взаимодействии гормонов может наблюдаться нормальное самочувствие и состояние здоровья человека. Отрицательно влияют на работу нейроэндокринной системы вредные привычки пристрастия, нарушения режима работы и отдыха, неправильное питание. Влияя хотя бы на одно звено в иерархии гормонов, организму наносится тяжелый удар и наблюдается дисфункция всей системы. Например, стрессовые воздействия, хроническое недосыпание могут вызывать повышение уровня пролактина. В результате изменения его количества нарушается выработка фолликулостимулирующего гормона и некоторых других, что приводит к нарушению функции яичников, изменяя уровень синтеза ими своих половых гормонов. В свою очередь, каскад таких реакций приводит к нарушению работы репродуктивной сферы и бесплодию, когда, казалось бы, нет прямого влияния образа жизни в этом случае на репродуктивную систему.

В реализации репродуктивной функции участвуют два основных класса гормонов – мужские и женские. Это деление очень условно, поскольку и те, и иные в разных концентрациях существуют и в мужском и женском организме.

У мужчин выше концентрация мужских гормонов – андрогенов. Они нужны для формирования тела по мужскому типу – широкие плечи, мышечная масса, первичные и вторичные половые признаки по мужскому типу, низкий тембр голоса, формирование полового влечения. К таким гормонам относятся тестостерон, андростендион (который, кстати, является предшественником, как тестостерона, так и эстрогенов), в какой-то степени антимюллеров гормон. Андростендион выполняет основную функцию половой дифференциации и вырабатывается клетками яичек и надпочечниками. Антимюллеров гормон в мужском организме участвует в развитии половой системы, а так же важен в процессе сперматогенеза. Тестостерон – основной андроген, который отвечает за формирование половых признаков, играет важную роль в формировании либидо, поведенческих реакция, направленных на продолжение рода. Однако нормальная работа мужской половой системы невозможна без влияния женских половых гормонов, даже если они находятся в небольших физиологических концентрациях.

Что касается женских половых гормонов, то к ним традиционно относят эстрогены и прогестины. Эстрогены представлены эстрадиолом и эстриолом. Эстрадиол оказывает преимущественное влияние на половое развитие девочки, создание условий, при которых будет возможна реализация репродуктивной функции. Эстриол более характерен для периода беременности, являясь одним из маркеров нормального развития плода. Гестагены представлены прогестероном, который также необходим для обеспечения нормального менструального цикла, без которого наступление беременности естественным путем невозможно. Особое значение этот гормон приобретает при беременности, «сохраняя» ее. Кроме того, для обеспечения овуляции нужен антимюллеров гормон. Его концентрация в крови отражает овуляторный запас женщины, что используют при определении вероятности наступления беременности в лечении бесплодной женщины. Еще одним строго специфическим женским гормоном является релаксин, который вырабатывается в яичниках и плацентарной ткани и оказывает свое влияние на течение беременности. Нормальное функционирование женской репродуктивной системы невозможно без присутствия мужских половых гормонов в крови, главное, чтобы был правильный баланс между их уровнями.

Половые стероиды начинаются вырабатываться еще с внутриутробного периода плода, однако пик их активности наступает в пубертатном и репродуктивном возрасте, затем их влияние на организм ослабевает, что является одной из причин старения клинически.

Нельзя однозначно сказать, какой гормон важнее для нормальной работы половой системы, в этом случае важнее слаженность и баланс в их уровне. Только при таком варианте возможна нормальная реализация детородной функции. Однако, к сожалению, все чаще возникают проблемы с невозможностью зачать ребенка, связанные с эндокринной дисфункцией. Консультацию по этому вопросу можно получить на этом сайте бесплатно у высококвалифицированных специалистов.

При нарушении гормонального баланса между эстрогенами и андрогенами возникают изменения не только в репродуктивной сфере, но и в состоянии других органов и систем организма. Так, например, при повышении уровня мужских половых гормонов у женщины развивается явление вирилизации – приобретения мужских черт. Пропорции тела претерпевают изменения в сторону схожести с мужскими, определяется преобладание мышечной ткани с распределением жировой ткани по мужскому типу, меняется голос, формируется оволосение по мужскому типу и т.д.Такое может происходить практически в любом возрасте. У мужчин также могут быть подобные изменения в сторону преобладания женских черт – явление феминизации, которое наблюдается при чрезмерном повышении уровня женских половых стероидов.

Заподозрить у себя нарушение гормональной сферы нередко не представляет труда. Могут беспокоить жалобы на плохое самочувствие, немотивированную слабость и апатию, раздражительность, перепады настроения, беспричинное повышение температуры тела до субфебрильных цифр, сухость во рту, изменения аппетита, нарушения сна, сухость кожи или напротив, потливость, нарушения менструального цикла, невозможность зачать или выносить ребенка. Симптомы гормональных нарушений крайне разнообразны, дифференцировать их может только специалист в этой сфере.

Нарушение гормонального статуса может быть крайне опасно для здоровья и, иногда, даже жизни женщины. Поэтому нельзя самостоятельно диагностировать те или иные нарушения у себя, предпринимать попытки самолечения. Это зачастую только усугубляет проблему до такой степени, что даже специалистам становится трудно справиться за проблемами со здоровьем. Если нужна консультация дистанционно, ее можно получить у опытных специалистов на этом сайте, обратившись в специальный раздел.

Лечение гормональных нарушений предусматривает, по возможности, устранение этиологического фактора – то есть причины патологии, а также же коррекцию выявленных изменений. Иногда требуется лишь модификация образа жизни, какие-то мягкие формы лечения, однако если изменения достаточно серьезны, может понадобиться и заместительная гормональная терапия, и медикаментозная коррекция. В некоторых случаях показаны оперативные методы лечения. Показания к тому или иному виду терапии определяет врач, объясняя пациенту все нюансы состояния его здоровья и возможные варианты преодоления проблемы

Окончательное решение принимается совместно в диалоге врача и пациента, подбирается наиболее оптимальный путь лечения.

Ссылка на основную публикацию
Фундук — Калорийность и Состав (БЖУ Витамины и Минералы)
Сколько в фундуке (кбжу): калорий, белков, жиров и углеводов Фундук обладает большим количеством полезных свойств. Но употреблять орех нужно очень...
Фрамицетин (Framycetinum)- описание вещества, инструкция, применение, противопоказания и формула
Трамицент - инструкция по применению Регистрационный номер: Торговое наименование: Международное непатентованное наименование: Лекарственная форма: Состав 1 мл препарата содержит: Действующее...
Французская косметика, органическая косметика, натуральная косметика из Франции купить в интернет-ма
Новинки натуральной и органической косметики из Франции с доставкой напрямую в Россию Естественная красота… это так по-французски! Легкость, чувственность, свежесть...
Фуникулярный миелоз — симптомы и лечение
Фуникулярный миелоз Фуникулярный миелоз — поражение спинного мозга, развивающееся вследствие недостаточности витамина В12. Как правило, сочетается с пернициозной анемией. Проявляется...
Adblock detector